New research could develop batteries that triple’s the range of electric vehicles

New research could develop batteries that triple’s the range of electric vehicles

We all aware of the fact that the automobile industry is gonna witness a gigantic change in the years to come. Electric vehicles are soon gonna hit the road. But there are certain issues we need to sort it out before it becomes a big problem to us.

It is actually the need of the hour to increase the range of the electric cars. Companies are all trying their level best to find a novel solution to this problem. This might be a good news for these companies.

As the research at the University of Waterloo could lead to the development of batteries that triple the range of electric vehicles.

The breakthrough involves the use of negative electrodes made of lithium metal, a material with the potential to dramatically increase battery storage capacity.

“This will mean cheap, safe, long-lasting batteries that give people much more range in their electric vehicles,” said Quanquan Pang, who led the research while he was a PhD candidate in chemistry at Waterloo.

The increased storage capacity, or energy density, could boost the distance electric vehicles are able to travel on a single charge, from about 200 kilometres to 600 kilometres.

Credit: Mit

In creating the technology, Pang and fellow researchers, including supervisor Linda Nazar, a professor of chemistry at Waterloo and a Canada Research Chair in Solid State Energy Materials, had to overcome two challenges.

The first challenge involved a risk of fires and explosions caused by microscopic structural changes to the lithium metal during repeated charge-discharge cycles.

The second involved a reaction that creates corrosion and limits both how well the electrodes work and how long they last.

Researchers solved both problems by adding a chemical compound made of phosphorus and sulfur elements to the electrolyte liquid that carries electrical charge within batteries.

The compound reacts with the lithium metal electrode in an already assembled battery to spontaneously coat it with an extremely thin protective layer.

“We wanted a simple, scalable way to protect the lithium metal,” said Pang, now a post-doctoral fellow at the Massachusetts Institute of Technology. “With this solution, we just add the compound and it works by itself.”

The novel approach paves the way for electric vehicle batteries that enjoy the benefits of lithium metal electrodes – greater storage capacity and therefore greater driving range – without comprising safety or reducing lifespan.

Nazar is also a member of the Order of Canada, a member of the Waterloo Institute for Nanotechnology and cross-appointed to the departments of Physics and Astronomy and Chemical Engineering.

A paper on the research was published in the journal Joule.

Check our page on Facebook, Instagram and subscribe to our YouTube channel.

Scientists present the first bionic hand with the sense of touch
Cryptojacking might be the new privacy threat in 2018
Physicists developed a coldest chip runs at near Absolute Zero
Scientists prints ‘self-healing’ flexible metal circuits
A Tokyo-based Startup going to start ‘Moon Ads’
Son’s asthma inspires a professor to create world’s 1st molecular air purifier

No Comments

Leave a Comment.